
Edward Elgar Publishing UN iLibrary HeinOnline Directory of Open Access Books SAGE Journals ASTM Compass Arxiv
From this page you can:
Home |
Descriptors



The elements of statistical learning / Trevor Hastie
Title : The elements of statistical learning : data mining, inference, and prediction Material Type: printed text Authors: Trevor Hastie, Author ; Robert Tibshirani, Author ; Jerome Friedman, Author Edition statement: 2nd edition Publisher: New York : Springer Publication Date: 2013 Series: Springer texts in statistics Pagination: xxii; 745 p. Layout: ill. Size: 24 cm ISBN (or other code): 978-0-387-84857-0 Price: 69,95 € General note: Includes bibliographical references (p. [699]-727)
Includes index (p. [729]-745)Languages : English (eng) Original Language : English (eng) Descriptors: Bioinformatics
Computational intelligence
Data mining
Mathematical statistics
Research - Statistical methodsClass number: 006.3 Abstract: During the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting the first comprehensive treatment of this topic in any book. Contents note: Overview of Supervised Learning; Linear Methods for Regression; Linear Methods for Classification; Basis Expansions and Regularization; Kernel Smoothing Methods; Model Assessment and Selection; Model Inference and Averaging; Additive Models, Trees, and Related Methods; Boosting and Additive Trees; Neural Networks; Support Vector Machines and Flexible Discriminants; Prototype Methods and Nearest-Neighbors; Unsupervised Learning; Random Forests; Ensemble Learning; Undirected Graphical Models; High-Dimensional Problems: p N; Record link: https://library.seeu.edu.mk/index.php?lvl=notice_display&id=16107 Hold
Place a hold on this item
Copies
Barcode Call number Media type Location Section Status 1702-001591 006.3 Has-ele 2013 General Collection Library "Max van der Stoel" English Available Основни концепти за биоинформатиката / Dan E. Krane
Title : Основни концепти за биоинформатиката Other title : Fundamental Concepts of Bioinformatics Material Type: printed text Authors: Dan E. Krane, Author ; Ден Е Крејн, Author ; Michael L. Raymer, Author ; Мајкл Рајмер, Author ; Кристина Велевска, Translator Edition statement: 1st edition Publisher: Скопје : Абакус комерц Publication Date: 2010 Pagination: 314 p. Size: 20 cm ISBN (or other code): 978-6-08-459701-8 General note: Includes bibliographical index (p. 303-314) Languages : Macedonian (mac) Original Language : English (eng) Descriptors: Bioinformatics Class number: 570.285 Abstract: Оваа книга настана примарно од сопствената потреба за еден текст, кој со за доволство го препорачуваме на нашите студенти заинтересирани за биоинформа тиката. Ние цврсто веруваме дека најдобрата работа во оваа нова област произле гува од интеракцијата на поединците кои се добро обучени во двете дисциплини - биологија и компјутерски науки, кои често имаат малку заедничко во смисла на јазикот, пристапите кон решавање на проблемите, па дури и физичката лока ција во рамките на универзитети и колеци.
Нема недостиг од книги и веб-страници со биоинформатички корисни алатки за биолози заинтересирани за анализирање на нивните сопствени податоци. Исто така постојат и неколку книги за компјутерски научници, кои опишуваат страте гии за правење компјутерски поефикасни алгоритми. Сепак, основен проблем постои во начинот на кој текстовите ги подготват студентите за работа во биоин форматиката.Contents note: Молекуларна биологија и биолошка хемија; Пребарување податоци и парно подесување; Шеми на замена; Методи базирани на оддалеченост за филогенетика; Методи базирани на карактери на филогенетика; Препознавање на гентиката и гени; Претпоставки за структурата на протеините и РНА; Протеомика; Record link: https://library.seeu.edu.mk/index.php?lvl=notice_display&id=20658 Hold
Place a hold on this item
Copies
Barcode Call number Media type Location Section Status 3702-002328 570.285 Kra-OsnM 2010 General Collection Library "Max van der Stoel" Macedonian Available